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1. Introduction
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The AdS/CFT correspondence [l] may be used as a powerful tool for addressing difficult

problems in field theory using geometric techniques. The correspondence provides us with

a precise map between a large class of conformal field theories, together with certain defor-

mations of these theories, and various types of geometry. A rich set of examples consists



of Type IIB string theory in the background AdSs x Y, where Y is a Sasaki-Einstein five-
manifold [J—[]. For example, one may take Y = T'%! [B], or the more recently discovered
infinite families of Sasaki-Einstein manifolds, Y74 [f, [l and L% [§, f]. In all these cases,
the dual field theories [[[J—[LF] are conjectured to be supersymmetric gauge theories, at an
infra-red (IR) conformal fixed point of the renormalisation group (RG). More briefly, they
are ' =1 SCFTs.

Such AdSs5 backgrounds arise from placing a large number N of parallel D3-branes
at the singular point of a Calabi-Yau singularity C(Y), equipped with a Ricci-flat Kéhler
cone metric

gc(y) = dT2 —|-7‘2gy . (11)

The backreaction of the branes induces a warp factor, which is essentially the Green’s
function for the metric ([[.1)), and produces an AdS5 x Y geometry together with N units
of Ramond-Ramond (RR) five-form flux.

One interesting generalisation of the original AdS/CFT correspondence is to consider
deformations of the conformal field theories and their dual geometric description. The class
of deformations that we will study in this paper correspond to giving vacuum expectation
values (VEVs) to certain baryonic operators. These types of deformation allow one to
explore different baryonic branches of the moduli space of a given theory, and are in general
related to (partial) resolutions of the conical Calabi-Yau singularity. In the context of the
conifold theory [fJ] some features of these solutions were discussed in [[[f], and recently
expanded upon' in [2J]. However, a systematic discussion of these baryonic branches, from
an AdS/CFT perspective, has not appeared before. The full ten-dimensional metric is
simply a warped product

g10 = H Y 2gpis + HY gy | (1.2)

where gx is a Ricci-flat Kihler metric that is asymptotic to the conical metric ([.1), and
the warp factor H is the Green’s function on X, sourced by a stack of D3-branes that
are localised at some point xg € X. The baryonic branches considered here are different
from the kind studied in [R1], 7, where the field theory undergoes a cascade of Seiberg
dualities. Nevertheless, the results presented in this paper may be useful for obtaining a
better understanding of baryonic deformations of non-conformal theories as well.

Until recently, explicit Ricci-flat Kahler metrics of this kind were not known, apart
from the case of the conifold and its Zy orbifold [2J.?2 In [P] we presented families of ex-
plicit Ricci-flat Kéhler partial resolutions of conical singularities in all dimensions. These
included several classes in three complex dimensions that give rise to toric partial resolu-
tions of the Y4 singularities (see also [ —RJ]). In the present paper we will further discuss
these metrics, providing their toric geometry description and their dual gauge theory in-
terpretation. In fact, these are just examples of a general feature that we shall describe:

'For other examples, see [ﬂf@]
2More generally one may also study the Ricci-flat K&hler metrics on the canonical line bundles over
Kéhler-Einstein manifolds constructed in @, @], which are explicit up to the Kéhler-Einstein metric.



giving vacuum expectation values to certain baryonic operators in the UV, the theory flows
to another fixed point in the far IR. In the supergravity solution a new “throat” develops
in the IR, at the bottom of which one generally finds a new Sasaki-Einstein manifold.?

Following [R(], we also propose that one may extract information about the one-point
function (condensate) of baryonic operators turned on in a given geometry by computing
the Euclidean action of certain instantonic D3-brane configurations in the background. In
particular, we will gather evidence for the validity of this conjecture by showing that the
exponentiated on-shell Euclidean D3-brane action quite generally reproduces the correct
scaling dimensions and baryonic charges of the baryonic operators that acquire non-zero
VEVs. This generalises the result of [R(], which was for the resolved conifold geometry.
Given a background geometry, one may also use these results as a guide to predict which
operators have acquired non-zero expectation values. We shall illustrate this for the YP¢
theories and their resolutions in section []. We anticipate that a complete treatment of
such instantonic D3-branes will be rather involved and subtle. In particular, one requires a
somewhat deeper understanding of the map between baryonic operators in the gauge theory
and the dual objects, which are, roughly speaking, specified by certain divisors/line bundles
in the geometry. We shall make a few more comments on this in the discussion section.

The plan of the rest of the paper is as follows. In section f] we discuss generic features of
supergravity backgrounds corresponding to baryonic branches, including some remarks on a
Fuclidean D3-brane calculation that quite generally should compute baryonic condensates.
In sections [ and [] we provide a toric description of Calabi-Yau metrics on various partial
resolutions recently discovered by the authors in [2§]. In section [f| we present the gauge
theory interpretation of the geometries previously discussed. In section f| we conclude and
discuss briefly some of the issues that have arisen in the paper.

2. Baryonic branches

2.1 Spacetime background

In this section we discuss the class of Type IIB backgrounds we wish to consider. These
will be supergravity backgrounds produced by placing N coincident D3-branes at a point
on a complete asymptotically conical Ricci-flat Kéhler six-manifold (X, gx ). The presence
of the D3-branes induces a warp factor that is essentially the Green’s function on (X, gx);
we argue that such a warp factor always exists and is unique.

The spacetime background (Mg, g10) we are interested in is given by the following
supersymmetric solution of Type IIB supergravity

g0 = H ' 2ggis + HY?gx
Gs = (1 + #19)dH 1 Avoly . (2.2)

Here gp1,3 is the flat Minkowski metric, with volume form voly, and (X, gx) is a complete
Ricci-flat Kahler six-manifold. The warp factor H is a function on X. If we take H to be a

3This may happen to be an orbifold of S°, as will be the case in the examples we shall discuss.



positive constant then the background metric (R.1]) is Ricci-flat. However, if we now place
a stack of N D3-branes parallel to R1? and at the point xg € X then these act as a source
for the RR five-form flux G5. The corresponding equation of motion then gives

C
AH = 5 (x— . 2.3
\/m (X XO) ( )

Here A is the Laplacian on (X, gx), and C is a constant given by
C = (2m)'gs(a’)’N . (2.4)

Thus H = G(x,X0) is a Green’s function on the Calabi-Yau (X, gx). For instance, when
X =C(Y) is a cone over a Sasaki-Einstein manifold (Y, gy)

gx = dr* + gy, (2.5)
placing the D3-branes at the apex of the cone xy = {r = 0} results in the following Green’s
function*

L4

Heone = — (2.6)
r

where
C
4
= 2.
4vol(Y') (27)

This last relation is determined by integrating /det gx AxH over the cone: the right hand
side of (R.3) gives —C, whereas the integral of the left hand side reduces to a surface integral
at infinity, which gives the relation to vol(Y). The Type IIB solution (R.1) is then in fact
AdSs x Y, where L in (R.7) is the AdS5 radius.

Assuming the Green’s function G(x,%() on (X, gx) exists, asymptotically it will ap-
proach the Green’s function for the cone (P.6)), and the same reasoning as above still requires
the relation (B.7) to hold. On the other hand, the Green’s function blows up at the point
Xg. Indeed, we have

4

G(x,x9) = ﬁ(l—i—o(l)), (2.8)

where p(x,xg) is the geodesic distance from xg to x, and

C

Ly = ———— .
IR 4vol(S5)

(2.9)
The normalisation constant L%R is computed as above, noting that the metric in a neigh-
bourhood of xq looks like flat space in polar coordinates dp? + p?ggs. If (X, gx) is only a
partial resolution of X and X is a singular point, this metric is instead dp? + p®gz where

4Since we are interested in the near-horizon geometry, we have dropped an additive constant. Restoring
this corresponds to the full D3-brane solution.



gz is a Sasaki-Einstein metric on the link Z of the singularity. More generally one would
then have® Lz = C/4vol(Z).

Due to the singular behaviour of the Green’s function at the point x( in (R-§) we see
that the metric (R.1)), with H = G(x,%0), develops an additional “throat” near to x¢, with
the metric in a neighbourhood of x( (with x( deleted) being asymptotically AdSs x Z. Here
Z = S5 if x¢ is a smooth point. Thus the gravity solution (-I]) - (B-2) has two asymptotic
AdS regions, and may be interpreted as a renormalisation group flow from the original
theory to a new theory in the IR.

A Green’s function on a Riemannian manifold (X, ¢gx) of dimension n is by definition
a function on X x X \ diag(X x X) satisfying:

e G(x,y) =G(y,x), and AxG = 0 for all x #y with y fixed.
o G(x,y) > 0.

e As x — y, with y fixed, we have

A
Gx,y) = ————(1+o0(1 2.10
(0y) = el ol1) (2.10)
for n = dimg X > 2, where p(x,y) denotes the geodesic distance between x and y,
and A is a positive constant.

Such a function doesn’t necessarily always exist. However, in the present set-up we may
apply the following result of [BQJ: if (X, gx) is complete and has non-negative Ricci cur-
vature then the Green’s function above exists and is finite and bounded away from the
diagonal in X x X if and only if

o t

/T TR dt < oo (2.11)
for all r > 0 and all y € X. Here B(t,y) is the ball of radius ¢ and centre y. If the volume
growth of the manifold is at least quadratic, then the integral on the left hand side of (2.11)
always converges. In our case, (X, gx) is complete, Ricci-flat, and is asymptotically conical,
which implies the volume of any ball grows like pb, where p is the distance function from
any point in X. There is, moreover, a unique Green’s function that asymptotes to zero at
infinity. The proof of this is a simple application of the maximum principle.

The background geometries will depend on various moduli. An asymptotically conical
Ricci-flat Kahler metric on X will generally depend on a number of moduli. However, we
note that, in contrast to the case of compact Calabi-Yau manifolds where the moduli space
is understood extremely well, there is currently no general understanding of the moduli
space of non-compact Calabi-Yau manifolds. In addition to the metric moduli, there are a
number of flat background fields that may be turned on without altering the solution (R.1)
- (B.9). For instance, there is the dilaton ¢, which determines the string coupling constant®

SHowever, the general existence of the Green’s function on such a singular (X, gx) is not guaranteed by
any theorem we know of, unlike the smooth case treated below.
SHere it really is constant.



gs = exp(¢). This is paired under the SL(2;R) symmetry of Type IIB supergravity with
the axion field Cy. The topology of X in general allows one to turn on various topologically
non-trivial flat form-fields. In particular we have the NS B-field, as well as the RR two-
form C5 and four-form C4. These play an important role in a detailed mapping between
the gauge theory and geometry moduli spaces. However, these fields will be largely ignored
in the present paper.

2.2 Baryons and baryonic operators

Below we recall how baryonic symmetries and baryonic particles arise in AdS/CFT. We
also extend the proposal of [R0] for the use of Euclidean D3-branes as a means to detect
non-zero expectation values of baryonic operators in a given background geometry.

Consider a Sasaki-Einstein manifold Y with b3 = b3(Y") = dim H3(Y; R). By wrapping
a D3-brane on a 3-submanifold ¥ C Y we effectively obtain a particle in AdS. This particle
is BPS precisely when the 3-submanifold is supersymmetric, which is equivalent to the
cone C(X) C C(Y) being a complex submanifold, or divisor. In [Bl]-BJ] such wrapped
D3-branes were interpreted as baryonic particles. This also leads one to identify the non-
anomalous baryonic symmetries in the field theory as arising from the topology of Y, as
follows. Fluctuations of the RR four-form potential Cy in the background AdSs x Y may
be expanded in a basis of harmonic three-forms of (Y, gy)

bs
0Cy = Z.A] ANHr . (2.12)

I=1

Here H; € H3(Y, gy ) are harmonic three-forms that are generators of the image of H3(Y'; Z)
in H3(Y, gy). The fluctuations give rise to b3 gauge fields A; in AdS5. As usual these gauge
symmetries in AdS become global symmetries in the dual field theory, and are identified
precisely with the non-anomalous baryonic symmetries U(l)lg. The charge of a baryonic
particle arising from a 3-submanifold ¥, with respect to the I-th baryonic U(1)p, is thus

given by

QrX] = /EHI- (2.13)

In fact, the above discussion overlooks an important point: the D3-brane carries a
worldvolume gauge field M. For a D3-brane wrapping R; x X, supersymmetry requires
this gauge field to be flat. Thus, as originally pointed out in [B], if ¥ has non-trivial
fundamental group one can turn on distinct flat connections on the worldvolume of the
wrapped D3-brane, and a priori each corresponds to a different baryonic particle. These
(3;2).

The dual operator that creates a baryonic particle associated to (X, L) is denoted
B(2,L). For fixed ¥ these all have equal baryonic charge (R.13) and also equal R-charge,
where the latter is determined by the volume of ¥ via [B3]

flat connections are defined on torsion line bundles L over . Thus ¢;(L) € HZ,

_ Navol(X)

R(®) = 300 (2.14)



Given a background geometry that is dual to an RG flow induced by giving expectation
values to some baryonic operators, it is natural to ask whether it is possible to compute
baryonic one-point functions by performing some supergravity calculation. Following the
conifold example discussed in [R(J] we shall argue that, quite generally, a candidate for
computing the VEV of a baryonic operator is a Fuclidean D3-brane that wraps an asymp-
totically conical divisor D in the asymptotically conical (partial) resolution X, such that
D has boundary 0D = % C Y. Indeed, taking inspiration from the Wilson loop pre-
scription [B4, B], it is natural to conjecture that the holographic expectation value of a
baryonic operator is given by the path integral of a Euclidean D3-brane with fixed boundary
conditions:

(B(,1)) = / DU exp(—Sp3) ~ exp(—oshel) (2.15)
oD=X%

on—shell

Roughly, S7% is the appropriately regularized action of a FEuclidean D3-brane,
whose worldvolume D has as boundary a supersymmetric three-dimensional submanifold
3. C Y. In fact, a complete prescription for computing a baryonic condensate should take
into account the analogous extension of the torsion line bundle L, and thus in particular
the worldvolume gauge field. This is rather subtle and would take us too far afield in the
present paper — we will return to this, and related issues, in a separate publication [Bf].
In the following two subsections we will show that the exponentiated on-shell Euclidean
D3-brane action obeys the following two basic properties: (1) it reproduces the correct
scaling dimension, and (2) it carries the correct baryonic charges. In the computation of
the scaling dimension we will formally set the worldvolume gauge field to zero, in line
with the comment above. One might worry” that in general the gauge field contributes a
divergent term to the large radius expansions we discuss below. However, since the result
with zero gauge field already produces the expected scaling dimension of the dual operator,
it is natural to conjecture that including the worldvolume gauge field does not alter this
result. This will be shown in detail in the paper [B].

2.3 Scaling dimensions of baryonic condensates

The real part of the Euclidean D3-brane action is given by the Born-Infeld term

Sei =Ty / dto/det(h + M) . (2.16)
D

Here D is the D3-brane worldvolume, with local coordinates o, @ = 1,...,4, and super-
symmetry requires D to be a divisor in X. T3 is the D3-brane tension, given by

1

Ty = ——+— .
3 (27)3a2g,

(2.17)

h is the first fundamental form i.e. the induced metric on D from its embedding into
spacetime ¢ : D — (Mg, g19). M is the worldvolume gauge field that we will formally set

"We are grateful to the referee for suggesting that we emphasize this issue.



to zero. Then the real part of the action reduces to

SBI = T3/ d4a\/dethH (2.18)
D

where gp is the metric induced from the embedding of D into (X, gx). Below we show that
the integral in (R.1§) is always divergent and thus needs to be regularised.® We evaluate
the integral up to a large UV cut-off » = r.. This will show that the action has precisely
the divergence, near infinity r. — oo, expected for a baryonic operator that has acquired a
non-zero expectation value. As mentioned at the end of section P.3, this calculation of the
scaling dimension is rather formal since we have set the worldvolume gauge field M to zero.
A complete treatment that also includes the gauge field will appear in [Bf]. Our analysis
below will also lead to a simple necessary condition for the holographic condensate to be
non-vanishing.

At large r, the geometry is asymptotically AdSs x Y, where r becomes a radial coor-
dinate in AdSs. Then, following® [[G, one can interpret the asymptotic coefficients in the

expansion of a field ® near the AdSs boundary
d ~ DortTt 4 Agr2, (2.19)

as corresponding to the source of a dual operator Oa and its one-point function, respec-
tively. Here A is the scaling dimension of Oa. In particular, if ®g vanishes, the background
is dual to an RG flow triggered purely by the condensation of the operator Oa, without
explicit insertion of the operator into the UV Lagrangian.

Let D[r.] denote the compact manifold with boundary defined by cutting off a divisor
D at some large radius r.. We then define

S[re, xo] = Tg/ d*o\/det gp G(x,%0), (2.20)

DIrc]

where we regard this as depending on the position of the stack of D3-branes xg € X. We
then show that the following result is generally true:

0 if xpeD
exp(—Slre x0]) = . (2.21)
@) (rc Am)) if x9¢D .
Here
~ Nrvol(X)

is the conformal dimension of any baryonic operator associated to X, under the correspon-
dence discussed in section .9, In particular, this result is insensitive to the choice of torsion

8See [@] for a careful treatment of holographic renormalisation of probe D-branes in AdS/CFT.

9Strictly speaking, the prescription of [E], which is an extension of the original prescriptions of [@, E],
is formulated for supergravity modes. Here we shall assume that this remains valid for the intrinsically
stringy field describing a (Euclidean) D3-brane, as in [E, E]



line bundle L on X. It is interesting to note that if we keep the divisor D fixed and regard
exp(—S|re, xo]) as depending on the position of the D3-branes xg, then from (R.21) we may
deduce that this has a zero along D, and is otherwise non-singular. These properties are
compatible with the interpretation that a baryonic condensate is in fact a section of the
divisor bundle O(D).

The proof of (R.2)) is rather simple. Suppose first that xo € D. In a small ball around
a smooth point xg in X the Green’s function behaves as

o= Mgy oo = S (2.23)
ot 0 ™ 4vol(S5) '

where p is the geodesic distance from xg. A neighbourhood of xg in D looks like R* with
radial coordinate p |p. Let us evaluate the integral in a compact annular domain V(e),
defined by 0 < € < p |p< §. Here we shall hold § small and fixed, and examine the integral
in the limit € — 0:

4
((%40’\/det gG(x,%x¢) = /( )Lplf,og(l 4 0(1))dp dvolgs ~ Lizvol(S*)log(1/e) . (2.24)
V(e V(e
Since the Green’s function is positive everywhere, this logarithmic divergence at ¢ = 0
(that is at x = xg) cannot be cancelled, and we have proved the first part of (R.21]).
Suppose now that xg ¢ D. Then the Green’s function G(x,xq) is positive and bounded
everywhere on D. Let us cut the integral in two. We integrate first up to ro < r., where
ro will be held large and fixed, and then integrate from rq to r.. Let the latter domain be
denoted V (rg,r.). The integral up to rg is finite. The integral over V (rg,r.) is, in the limit
re — 00,

Te L4
/ dtoy/det gG(x, %) ~ / r—4r3drvol(2) ~ L*vol(X)logr, . (2.25)
V(ro,re)

70

Now recalling the normalisation (2.4) and (P.17) that we gave earlier, we compute
TsC = 27N . (2.26)
Inserting this into (R.7), we arrive at
S[re, x0] ~ TsLvol(X) logr. = A(X) logre, (2.27)
showing that indeed
exp(—S[re,x]) ~ Ar;AE) (2.28)

gives the leading behaviour as r. — co. We interpret this result as a signal that a bary-
onic operator B(X, L) of conformal dimension A has acquired a vacuum expectation value
(B(X,L)) < A. When xg € D the above analysis shows that A = 0 identically and thus
the condensate certainly vanishes. Thus xg ¢ D is a necessary condition for non-vanishing
of the condensate.



2.4 Baryonic charges of baryonic condensates

We will now consider the Chern-Simons part of the Euclidean D3-brane action, which upon
setting M = 0, reduces to

Scs = iug/ Cy . (2.29)
D

Here C, is the RR potential and the D3-brane charge is given by'®

1

A careful analysis of the remaining terms, involving Cs and Cy RR potentials, will be
presented elsewhere [Bg].

Given that our background geometries are non-compact, it is important to consider
the role of the boundary conditions for the background fields. Asymptotically we approach
an AdSs x Y geometry. This describes the superconformal theory that is being perturbed,
and in particular the boundary values of fields on Y specify this superconformal theory. We
thus require all background fields to approach well-defined fields on AdSs x Y at infinity.
To make this statement more precise, we may cut off the asymptotical conical geometry
at some large radius r.; the boundary is denoted Y, which for large r. is diffeomorphic
(by not isometric in general) to the Sasaki-Einstein boundary (Y, gy ). The restriction of
all fields to Y., or rather RY3 x Y;._, should then give well-defined smooth fields on Y in
the limit . — oo, and these values specify the superconformal theory in this asymptotic
region.

Note that for the conical geometry C(Y'), which corresponds to the AdSs x Y back-
ground itself, the internal RR flux is proportional to the volume form on (Y, gy ). Thus, in
particular, there is no globally defined C4 such that dCy = G5. Since G§"° |x= voly, a
natural gauge choice is to take Cy (locally) to be a pull-back from Y under the projection
m:CY) =2 Ry xY — Y. By picking a trivialisation over local patches U C Y, the
integral of the corresponding C$°" over D N w~!(U) vanishes, since D is a cone and the
contraction of 9/0r into C§{°"° is zero by construction. For a general asymptotically coni-

cal background (X, gx) with the N D3-branes at the point xg € X, the corresponding G5
Cbackground
4

which approaches the above gauge choice for C{°"® near infinity. With this gauge choice

will approach asymptotically the conical value. Thus we may choose a gauge

we deduce that the integral

i/lg / C}faekground (231)
D

is finite.11

108ee, for example, [@]

"When X is toric, using symplectic coordinates one can show that there is a gauge in which Cy has
vanishing pull-back to any asymptotically conical toric divisor. In particular, we may locally write Cy =
dé1 Adga Adgs A A for some one-form A.

— 10 —



In general, to any background choice of C}faekground we may add a closed four-form.

If this four-form is not exact one obtains a physically distinct background. Indeed, recall
that the basic gauge transformation of Cy is the shift

Cy — Cy4+dK (2.32)

where K is a three-form. The above integral (R.31) then clearly depends on the choice of
gauge, since

’i,LLg/ Cy — i/L3/ Cy + i/L3/Ky, (2.33)
D D %

where Ky = K |y is the restriction to Y of the three-form K € Q3(X). As discussed
above, we should consider only those gauge choices for Cy that give a well-defined form on
Y, implying that dK also restricts to a well-defined form on Y. We may thus take K itself
to be well-defined in the limit Y = lim, . Y;,, modulo an exact part that has no such
restriction. The exact part may diverge in the limit, but at the same time it drops out of
the integral (2.33) since ¥ is compact, where more precisely we should define the integral
as the limit of an integral over ¥,... Note that the phase shift (P.33) depends only on Ky,
and not on the extension K of Ky over X.

On the other hand, true symmetries are gauge transformations that do not change the
fields at infinity. Thus we should consider a fized gauge choice for Cy |y on the AdS bound-
ary, and gauge transformations whose generator K € Q3(X) is such that dKy = 0. Gauge
transformations of C4 whose generators K vanish at infinity act trivially on physical states.
Thus shifts (.39) where K |y= 0 produce physically equivalent Cy fields. Indeed, recall
that global symmetries in gauge theories arise from gauge symmetries whose generators
do not vanish at infinity but that leave the fields fixed at infinity.'> We therefore identify
these transformations of the background C4 as the non-anomalous baryonic symmetries in
the gauge theory.

We may pick a natural representative for a class in H3(Y;R) using the Hodge decom-
position

Q*(Y) = dO*(Y) @ H3(Y, gy) @ 6Q*(Y) (2.34)
on (Y, gy). We may then write any closed Ky uniquely as
Ky = KB g\ (2.35)

where K™ € H3(Y, gy) & H3(Y;R). Of course, [;;d\ = 0. Thus, although there is an
infinite set of background gauge-equivalent Cy fields on X that approach a given boundary
gauge choice on Y, the integral of Cy over any D depends only on a finite dimensional part
of this space, namely the harmonic part of Ky. We may then expand

bs
s Ky = 5 H; (2.36)
I=1

12Notice that this discussion parallels a similar discussion in [@]

— 11 —



where recall that H; € H3(Y,gy) form an integral basis for the image H3(Y;Z) —
H3(Y;R). Notice that shifting the periods of Cy by an integer multiple of (472a’)? (large
gauge transformations) does not change the quantum measure exp(—S). Thus the global
symmetry group arising from gauge symmetries of Cy is, more precisely, the compact
abelian group H3(Y;U(1)) = U(1)", and in particular the 57 are periodic coordinates.
Notice that these harmonic three-forms are the same as those appearing in the KK ansatz
discussed in section P.3, that give rise to the baryonic symmetries. We conclude that the
effect of the above gauge transformation is to shift

exp {ng /D 04] — exp (i8'Qr[X]) exp [ng /D 04] : (2.37)

This is a global transformation in the boundary SCFT, where Q[X] is the baryonic charge
of the baryonic operator B(X, L) with respect to the I—th baryonic U(1)p [I4].

3. Toric description of Y9 partial resolutions

So far our discussion has been rather general. In the remainder of the paper we discuss a set
of examples, namely the Y?¢ theories. In the present section we review the toric geometry
of Y [[L(] and discuss several classes of (partial) resolutions of the corresponding iso-
lated Gorenstein singularities. We present explicit asymptotically conical Ricci-flat Kéhler
metrics on these partial resolutions in section []. The results of section .3 concerning the
vanishing of certain baryonic condensates due to the behaviour of the Green’s function in
fact translate into simple pictures in toric geometry. For the Y?¢ theories, the map from
toric conical divisors D = C'(X), with link ¥ equipped with a torsion line bundle L, to a
class of baryonic operators constructed simply as determinants of the bifundamental fields
is known from the original papers [[2, [4). The toric pictures for the partial resolutions
referred to above then immediately allow one to deduce which bifundamental fields do not
obtain a VEV for that background. In the examples we discuss this simple sufficient con-
dition for the condensate to vanish thus leads to predictions that may easily be checked
directly in the quiver gauge theory. In section [] we verify these predictions by giving VEVs
to the relevant bifundamental fields, and determining where the resulting theory flows in
the far IR. The results agree precisely with the geometry of the partial resolutions.

3.1 Toric geometry and the Y79 singularities

We begin by briefly reviewing the geometry of toric Gorenstein (Calabi-Yau) singularities,
focusing in particular on the YP¢ geometries and their toric resolutions.

A toric Gorenstein singularity in complex dimension three is specified by a convex
lattice polytope A C R%. Such a polytope may be specified by a set of vectors w, € Z2 C
R2, a =1,...,d, which are the defining external vertices of the polytope. More precisely,
there is a 1-1 correspondence between such singularities and SL(2;Z) equivalence classes
of convex lattice polytopes, where the origin may be placed anywhere in the lattice. Here
SL(2;Z) acts on Z? C R? in the obvious way. A choice of lattice polytope for the Y7+
singularities is shown in figure f]. The external points of the lattice polytope are, moving
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(p-g-1,p-0)

0,00 (@1,

Figure 1: Toric diagram of a YP'9 singularity, with internal point (s, s) shown. Here 0 < s < p.

anti-clockwise starting from the lower right corner, given by: w; = (1,0), wy = (p,p),
w3 =(p—q—1,p—q), wgy = (0,0). Thus d =4 for the YP? singularities.

The geometry is recovered from the lattice polytope by a form of Delzant’s construc-
tion. One first defines the three-vectors v, = (1,w,) € Z3. These define a linear map

A: RS R?
€q — Vg (3.1)

where {eq}q=1...4 denotes the standard orthonormal basis of R?. Let A C Z? denote the
lattice spanned by the {v,} over Z. This is of maximal rank, since the polytope A is
convex. There is then an induced map of tori

U1 =R /2724 — R3 /2773 = U(1)3 (3.2)

where the kernel is a compact abelian group A, with mo(A) = T = Z3/A.
Using this data we may construct the geometry as a Kéhler quotient. Thus, using the
flat metric, or equivalently standard symplectic form, on C%, we may realise

CY) =C%//o A. (3.3)

Here A = U(1)42 x T' ¢ U(1)? acts holomorphically and Hamiltonianly on C?. The
subscript zero in (B.3) indicates that we take the Kihler quotient at level zero. The origin
of C¢ projects to the singular point in C(Y), and the induced Kéhler metric on C(Y) =
R, x Y is a cone. Moreover, the quotient torus U(1)¢/.A = U(1)% acts holomorphically
and Hamiltonianly on this cone, with moment map

p:CY) -t 2R3

we) = e
Here t* =2 R3 denotes the dual Lie algebra for U(1)3. The image of the moment map
C* C R3 is a convex rational polyhedral cone formed by intersecting d planes through the

origin of R3. These bounding planes (or facets) of the cone have inward pointing normal
vectors precisely the set {v,}, and we have thus come full circle.
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The quotient (B.J) may be written explicitly in GLSM terms as follows. One computes
a primitive basis for the kernel of A over Z by finding all solutions to

> Qfva=0 (3.6)

with Q¢ € Z, and such that for each I the {Q} | a = 1,...,d} have no common factor.
The number of solutions, which are indexed by I, is d — 3 since A is surjective; this latter
fact again follows from convexity. One then has

X =K/A=Cl)) A (3.7)

with
Ke = {(zl,...,zd) e(Cd]ZQ‘}]za\Z:&} cc? (3.8)

where z, denote standard complex coordinates on C% and the charge matrix Q7 specifies
the torus embedding U(1)?3 C U(1)?. In GLSM terms, the matrix Q¢ is the charge
matrix, and the set K¢ is the space of solutions to the D-term equations. The cone C(Y)
is given by setting £ = (&1,...,&4-3) = 0.

By instead taking the Kihler quotient (B.3) at level £ # 0 we obtain various (partial)
resolutions of the singularity C(Y). In fact, to fully resolve the singularity we must enlarge
the above Kihler quotient to include all lattice points w, C ANZ? o =1,...,D, rather
than simply the external vertices w,. We then follow precisely the same procedure as
above, to obtain a Kéhler quotient of C” with D — 3 FI parameters. Here D = d + 7,
where 7 is the number of internal points of the toric diagram. For example, for YP? this
number is Z = p — 1. It is not too difficult to show that d = 3 + b3(Y) and Z = by(X),
where X is any complete toric resolution of the singularity. In this larger Kéhler quotient
the image C* of X under the moment map is more generally a rational convex polyhedron.
The bounding planes are precisely the images of the toric divisors in X — that is, the
divisors that are invariant under the U(1)? action. These are divided into non-compact
and compact, which number d and Z, respectively. By considering a strict subset of the
set of all lattice points in A we obtain only partial resolutions by taking the moment map
level € # 0. However we choose to present the singularity as a Kéhler quotient, the space of
FI parameters (moment map levels) that lead to non-empty quotients form a convex cone,
subdivided into conical chambers {C'}. Passing from one chamber into another across a
wall, the quotient space undergoes a small birational transformation. We shall see some
examples of this momentarily.

It is rather well-known that the chambers correspond to different triangulations of the
toric diagram A. The graph theory dual of such a subdivision of the toric diagram is
called the pg-web in the physics literature. That is, one replaces faces by vertices, lines by
orthogonal lines, and vertices by faces. The corresponding subdivision of R? into convex
subsets is in fact precisely the projection of the image of the moment map C* C R? onto
R2. One can do this canonically here precisely due to the Calabi-Yau condition, which

— 14 —



=)

D3-branes

Figure 2: On the left: pg-web with D3-branes at a toric singularity. On the right: a partially
resolved geometry, with D3-branes localised at a residual singularity. If a toric divisor D asymptotic
to C'(X) intersects the point-like D3-branes, the corresponding baryonic operators do not acquire a
VEV. On the other hand, toric divisors D that do not intersect the D3-branes may give rise to a
condensate, as denoted by the shaded region.

singles out the vector (1,0,0) one uses to construct the projection. Thus the pg-web is a
literal presentation of the Calabi-Yau: the moment map image C*, which in general is a
non-compact convex polyhedron in R?, describes the quotient by the torus action U(1)3,
and the pg-web is a projection of this onto R2. In particular, the bounding planes of C*,
which recall are the images of the toric divisors, map onto the convex polytopic regions in
the pg-web. This allows one to map complicated changes of topology into simple pictures
that may be drawn in the plane. This is why toric geometry is so useful.

Assuming there is an asymptotically conical Ricci-flat Kéhler metric for a given (par-
tial) toric resolution X, we may then use the pg-web to give a pictorial representation of the
corresponding flow geometry. A choice of point xy € X where the N D3-branes are placed

determines a choice of point!'3

in the pg-web. Thus, using the results of section R.3, one
obtains a simple pictorial representation of which toric divisors lead to zero condensates —
see figure J.

We decorate the pg-web with a blob, representing the location of the point-like stack
of D3-branes, and shade the divisors that do not intersect the latter. Notice that when the
D3-branes are at the conical singularity it is clear from the picture that no operators may
have a VEV — all toric divisors intersect the origin and thus must have zero condensate.
This is as one expects of course, since the diagram on the left of figure P| corresponds to the
superconformal field theory. Note also that the existence argument for the Green’s function
presented in section P.1] applied only to smooth X. When X is singular, as in figure [,

we do not know of any general theorems. However, at least for partial resolutions that

13Note that vertices in the pg-web really are points in X, but that points on a line in the pg-web are
images of circles in X, points on an open face are images of two-tori in X, and points “out of the page”
(recall the pg-web is a projection of C*) are images of three-tori.
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Small resolution | Small resolution Il

Figure 3: The pg-webs for the cone C(Y?:?) and its two small partial resolutions.

contain at worst orbifold singularities, the theorems referred to in section P.1 presumably
go through without much modification. For the YP¢ partial resolutions we shall restrict
our attention to, we shall indeed encounter at worst orbifold singularities.

3.2 Small partial resolutions

In the following two subsections we examine a simple set of partial resolutions of the Y4
singularities, starting with the partial resolutions that correspond t